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A finite-difference approximation is obtained and investigated and an algorithm for numerical solution of 
the diffusion equation for silicon atoms in gallium arsenide is constructed. 

Having developed a model of the transition of impurity atoms between sublattices of gallium arsenide [1 ] 
and a model of solid-phase silicon diffusion [2 ], we will formulate an algorithm for numerical solution of the 
diffusion equation for silicon atoms. 

First, we will construct a finite-difference approximation of diffusion equation (3) from [2 ]. To do this, 
using expressions (13) and (14) obtained in [2 ] for the transfer coefficients, we will evaluate D-zR: 

D - z R  = D i (1 - f i z z  2 - 2flax 3 - 3 f14z4) / f lo  . (1) 

Integrating (1) with respect to Z, we will represent Eq. (3) from [21 as follows: 

c r = + L2 /, (2) 

Vx 
L I T  = A ( D ( x )  Ga C ) ,  (3) 

L2~ p = V (/z V H) ,  (4) 

z "~ Vx 
= co CGa ( C / Z ) ,  (5) 

1 a 1 4 3 5) 
H (z) = Di X--jfl2~r - ~ f l 3 Z  - ~ f l 4 X  /flo. (6) 

We will introduce a grid for the time variable t with the nodes {t j} q=  1, 2, ..., m) and an ordinary uniform 
grid for the space variables. Assume that t j and t j+l correspond to t and ~'for the chosen j .  Using the balance 

method and averaging the nonlinear terms in the right-hand side of (2) over the range of variation of the exact 
solution, we obtain a difference scheme of the form 

~ T c T  
~,_ - A1 TI + A2 ~01, (7) 
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f ~, (c) dC, (8) 
~ ~  c 

1 f v,., (C) dC, (9) 
~/z- ~ - c c 

T = C  T (x, ~'), C T=C T (x, t), C = C ( x ,  •), C = C ( x ,  t), (10) 

where the difference operators A1, A2 approximate the operators L1, L2 on the uniform grid with second-order 

accuracy [3 ]. 
As follows from [4 ], not only the conservatism condition but also an additional energetic relation, valid for 

the initial differential model and having a certain physical meaning, will be fulfilled for Eq. (7). The absence of 
discrete disbalances in the grid analog of the conservation law provides a high efficiency for these schemes in 
"crude" grid computations of singularity problems as well as in calculations on large time intervals. The efficiency 

of this method in modeling arsenic diffusion in silicon and also in solving two-dimensional problems is demonstrated 
in [5 ]. 

We will dwell in more detail on techniques for evaluating integrals (8) and (9). Using various closed-type 

Newton-Cothes formulas [6 ], we can obtain a whole set of difference schemes for Eq. (7). In the present work we 
will consider the simplest integration formulas, namely, the trapezium formula and Simpson's formula. Combining 
these two formulas into one expression gives 

~1 = a (~' + 4~-~ + r ),  (11) 

v = e ( c ) ,  ~=~( -~) ,  r  (12) 

= (C + C ) / 2 ,  (13) 

~Pl = ~ 0P + 4~-F + ~ ) ,  (14) 

~p=~p(C), ~ = ~ o ( C ) ,  ~ = ~ / , ( C ) .  (15) 

As can be seen from (11)-(15), for ~ -- 3, ~ = 0 we obtain the trapezium formula, and for ~ = 1, 3 = 1, the 

Simpson formula. The error ei in evaluating integral (8) by the trapezium and Simpson's methods is, respectively, 

( C - C ) 2 ~ o " ( ~ ) ,  C < ~ < ~  (16) 
el = 12 

and 

eI = (C2-  C)4 ~0(4) C (17) 
88 (~), c < ~ <  . 

Similar estimates are found for integral (9) as well. 
It should be noted that if the transition of silicon into nodes of the arsenic sublattice is neglected, then at 

large impurity concentrations C > > ni it can be written that 

Z ~ C/ni, (18) 
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D (Z) = Di [1 + f l l C / n i  + f l2(C/ni )  2 + f l3(C/ni )  3 + f l4 (C/n i )4 l / f lo  . (19) 

This means that with a homogeneous distribution of neutral vacancies of gallium -v •  (CGa = 1) the following expression 
holds for the function ~o: 

~0 = D i [C + f l lC2/r t i  + f l2C3/rt  2 + f l3C4/n~ + f l 4C5 / r t4 ] / f l o ,  (20) 

i.e., the function T is a fifth-power polynomial in C. This means that if an integration formula of higher accuracy 
is used to calculate (8), for example, Bode's formula [6 ] 

~'z = 9~ (7T + 32T1 + 12~ + 32T2 + 7 ~ ) ,  (21) 

~01 = ~o (3C/4 + ~ / 4 ) ,  T2 = ~o (3~/4  + C / 4 ) ,  (22) 

then the value will be calculated accurately because the error is 

( - c )  6 (23) 
ez = 1935360 (~) - 0,  

Now it will be assumed that the impurity atoms are transferred by threefold charged intrinsic point defects, 

i.e., fll = f12 = f14 = 0 ,  f13 r 0. Then for large C 

~, = D i (C + f laC4/n~) / f lo ,  (24) 

and the error is equal to 

in integration by the trapezium method and to 

Oi fl3 (26) eI  -- 3 ( C  -- C)4 
120 flO ni 

in integration by Simpson's method. It should be taken into consideration that for a typical diffusion process the 

characteristic value is n i -  105/*m -a, and (~/n i) < 50. From expressions (25) and (26) i t  is seen that with 

Simpson's method the required integration accuracywill be achieved even at high values of (C - C), i.e., at large 

time steps, whereas with integration by the trapesium method the time step should be sufficiently small. The result 

obtained will also be valid in the case where transitions of silicon atoms into nodes of the arsenic sublattice are 

taken into account, because in this case the nonlinearity of the effective diffusivity of the impurity D(Z) decreases. 

Substitution of expressions (11) and (14) into (7) transforms this equation into 

^ T C T (~ 
C ~ , _ t  - ~ A I ( T + 4 g ~ + ~ ) + ~ - A  20p + 4 ~ - ~ + ~ ) "  (27) 

In the one-dimensional case on the grid ~h = {xi = ih, i = 0, m x } with account for (3) and (4) the 

difference scheme of second order of accuracy will be as follows: 

A 

C T _ C T 

?- t  
q,n  + + 

- 6 + + + 
(28) 
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or in index form 

/ ,=p (C) ,  (29) 

(3o) 

A T 
C i - C f  6 6 

~ ' -  t - - 6 ( 9 ~  2 

- /~ i+ l  ~i  - 2 P i ~ i  - / ~ i - 1  ~i  + P i ~ i - 1  + /~i-1 ~ i -1  + 43 (g i+ l  ~i+1 + 

+ -gi~i+X - gi+l ~i - 2 g i ~ i  - g i -1  ~i  + -gi~i-1 + Pi-1  ~i-1) + 

+/Zi+ 1 1Pi+1 + ~ ~ i i+l - - f l i + l ~ i  2 l ' t i ~ i - - ~ i - l ~ P i +  

-I- fli ~i-1 "t-/~i-1 ~ i '1  ] '  i =  1,  2 ,  . . . ,  m x . (31) 

System of equatio,ns (31) ia a system of nonlinear algebraic equations with a three-diagonal matrix relative to the 

unknowns C i - l ,  Ci, and Ci+ 1. These values were found with Newton's linearization of (31) [3 ]. The resultant 

linear three-point equation has the form 

k ~k+l k ~k+X ~ ~k+l F~/ (32) 
A i u i_  1 + B i C i + C Ui+ 1 = , i = I ,  2 . . . . .  m x ,  

" k  *"k where A~, B/~, C/k, and F~/are the coefficients and the free term of Eq. (32), calculated with the use of C i - l  , C i  , 

^k and Ci+ 1, determined in the previous iteration. The factorization method [3 ] was used to solve system of equations 

(32); the required solution of system (32) was obtained by iteration in k. 

Now we will consider the construction of boundary conditions for (2). As follows from (2), the flow of 

impurity atoms is determined by the expression 

] = - (V~o +/~VH).  (33) 

We will consider the one-dimensional case and prescribe the boundary conditions in the most general form: 

W1 (~~ + l-tHx) Ix=0 + W2Clx=o = Wa, (34) 

w4 +  ,Hx) I F + WsCl =xp = W6. (35) 

As one can see from (33) and (34), depending on the values of the parameters W1 and W2 at the left boundary, 

we can prescribe boundary conditions of the first (W1 = 0, W2 = 1), second (W 1 -- 1, W2 = 0), or third kind (W1 

0, W2 ~ 0). Similarly, at the right boundary x = XF at W4 = 0, WS = 1, we have boundary conditions of the first, 

at W4 = 1, W5 = 0, of the second, and at W4 ~ 0, W5 ~ 0, of the third kind. 

For the finite-difference approximation of conditions (34) and (35) use is made of the method of fictitious 

regions. For this purpose it is assumed that the semiconductor medium extends fictitiously beyond its surface into 

the region x < 0 and extends into the region x > xF. The fictitious node i = 0, positioned at the distance h from 

the semiconductor surface, will be introduced into the region x < 0 and it will be assumed that the fictitious value 
A 

of the concentration at this node is equal to Co. The characteristics of the medium in this region, including the 

distribution of defects, are assumed to be similar to the electrophysical parameters in the region [i = 1, i = 2 ], i.e., 
~Vx ~Vx 
CGa0 = CGa2; NO = N2; A0 = A2. Then, we approximate boundary condition (34) with second order of accuracy 
with respect to x. The finite-difference scheme obtained takes the following form: 
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^ ^ 

T2  - T0 #` H 2  #` ( 3 6 )  
+ w2cl  = w 3 ,  

# `  

#` ~ V •  #` 
~P0 = D (Z'0) Ga 0 C0, (37) 

#` ( fX'o 1 1~  #`4 3 ~  ^ 5 ~  ) 
HO (Z) = Di - -~ t52 Z :  - - ~ P3 ZO / flO -5 P4 ZO 

(38) 

#` #`A ^ X/ #` #`A ^ "2 # '2 
#` Co - C 0 - N 0 +  (C O - C 0 - N o )  + 4nie 

ZO = 2n i , 
(39) 

^ A ~': -- (40) 
C O = A 0 Co. 

As can be seen from (37)-(40), Eq. (36) is a nonlinear algebraic equation relative to the unknowns C0, 
# `  / ~ ,  r x  

C1, and C2, Newton's method was used for its linearization. The obtained equation linear in Co, C1, and C2 has 
the following form at the k+l-th iteration: 

Ak &k+l  k ~k+l  _k ~ k+l 
L CO + BL + CL U2 = FkL, (41) 

where A~L, B~L, CkL, and F~L are the coefficients and the free term of Eq. (41), calculated with the use of the values 
of C0~,C1 k, and Ckx determined at the k-th iteration. 

Taking into account the fact that, according to our assumptions, diffusion equation (2) is also valid at the 
fictitious point i = 0, we can write the three-point equation (32) for i = 1: 

Alk ~ :+1  + Blk ~lk+l + C~ ~ k + l =  F~I. (42) 

From Eqs. (41) and (42) it is possible to obtain an equation for  ~k+t and C2 TM, eliminating the value of 
the impurity concentration at the left fictitious point ~k+ 1. The resultant equation has the form 

~ k + l  = ak  ~ k + l  + ilk, (43) 

where a~2 and fl~2 are initial factorization coefficients. Using the obtained values of ak2 and ilk2, we can determine the 
factorization coefficients at all the nodes of the grid, including those at the right fictitious point i =mx  + 1. 

Let us consider the factorization equation at the points i =mx + 1 and i = rex: 

k+l  k ~ k+l  flk (44) 
mx = O:mx+l Cmx+l + mx+l , 

8 TM + Zkmx (45) m x - I  = Ctm x m x 

Now we will approximate right boundary condition (35) with second order of accuracy with respect to x. 
Similarly to the condition at the left boundary, we finally arrive at 

A k ~_k+l ~ k + l  _k ~ k + l  FkR (46) 
Umx-  I + B k mx + C RUmx+l  = , 

where A k, B k, C k, and/~R are the coefficients and the free term of (46), calculated with the use of the values of 
^ k  ~ ^ k  
Cmx_l,C~mx , and Cmx+l at  the k-th iteration. 
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~.k+ 1 From the system of equations (44)-(46) it is possible to evaluate ~F ' i.e., the last value necessary for 

evaluation of the grid function C~ +I by the factorization method. 

N O T A T I O N  

hi, hie , concentration of intrinsic charge carriers and its effective value at high doping levels; Di, intrinsic 
di f fus ion coeff icient  of silicon in gall ium arsenide;  • sign of the  n e u t r a l  cha rge  s ta te ;  ~v• Gai and 

ASi, concentrations of gallium and arsenic vacancies reduced to thermally equilibrium values in the neutral charge 
state; C and C A, concentrations of atoms at the nodes of the gallium and arsenic sublattices; C T, total concentration 

of silicon atoms; N, concentration of ionized atoms of a different impurity with the opposite type of conductivity; 
D( Z, 73, effective diffusion coefficient of silicon in gallium arsenide; Z, reduced concentration of electrons; co 2, 

function describing the deviation of the electron gas state from ideality at high doping levels. 
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